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Abstract—We present a cyber-physical system (CPS) testbed to
enable the rapid development, testing, and deployment of assistive
robotics technologies in the home of elderly individuals. We built
a CPS testbed in a lab environment with initial capabilities
allowing for the testing of both individual systems and collections
of systems. The CPS testbed has communication, computation,
sensing, and control resources available that can be leveraged by
individual subsystems within the CPS. We present projects built
by different design teams to be integrated in the CPS environment
to help the elderly live independent lives and age in place. Finally,
we describe a case study for the use of a mobile robot within
the CPS to detect and respond in case an elderly person falls at
home.

I. INTRODUCTION

Today, there are 7 individuals in the United States for each
person over the age of 65. Moreover, 23% of the younger
adult population in the U.S. declare themselves as informal
caregivers for an individual [1]. It is projected that in 2030,
there will be 4 people for each person over the age of 65.
Among these four people, one will be a child, one will be
sick and one will be at a distant geographical location [2].
This implies that the ratio of younger adults as caregivers to
older adults as individuals in need of care will be 1-to-1 in
2030. According to National Institute of Aging [3], it takes
approximately 6.5 hours per day to care for a frail older adult
and this is not sustainable for a caregiver while maintaining
full-time employment. Furthermore, 75% of the seniors prefer
to age-in-place [4].

In terms of psychological consequences, as individuals’
age, they experience dramatic changes in their cognitive func-
tioningtypically the speed at which cognitive functions can
be performed decreases [5]. Thus, as individuals age, their
cognitive abilities slow down and it takes them longer to react
in different situations, remember names of others, and solve
cognitive puzzles [6]. Although cognitive reactions slow down,
the expertise an individual gained over time takes over to
guides them, so older adults can still competitively play chess
[7], and type as quickly and accurately as young adults [8].

Life satisfaction and happiness are also important consid-
erations in understanding the aging process. Happiness doesn’t
differ for those over 65 [9]. In fact, older adults may be happier
than younger adults. One explanation of these findings is that
older adults tend to focus more on positive events. Research
has shown that older adults experience and convey more

positive emotions [10], and focus less on negative information
[11]. This is not to say that older adults experience more
intense positive feelings; rather they typically experience less
intense joy, but a greater sense of contentment [12].

Robotics, the integration of sensing, computation and ac-
tuation in the physical world, within the framework of a
cyber-physical system (CPS) can potentially transform the
capabilities of an individual with a disability in performing the
activities of daily living [13]. In this paper, we describe our
approach to build a CPS testbed and present one case study of
a fall-detection robot that is part of the CPS. Technology will
never replace a human caregiver. However they can provide
an extended independent living for older adults, and hence,
improve the quality of life for humans.

II. TESTBED DESCRIPTION

Our overarching goal is to improve the quality of life
for the elderly by developing an open-source, open-hardware
CPS testbed for verification and validation of control algo-
rithms. The research focuses on the design and validation of
shared control algorithms for the human-in-the-loop CPS, the
development of models for the proper autonomy levels in a
human-robot team and the implementation of adaptive and
context-aware control algorithms for reliable semiautonomous
behavior in dynamic environments. We have an initial smart
home environment deployed in which wheelchairs (and other
smart robots) can operate safely to demonstrate that we can
improve the quality of living for individuals with disabilities
and older adults and hence, we can enhance the efficiency
of the healthcare system by effectively interconnecting and
operating CPS. We envision that smart robots (wheelchairs,
assistive mobile robots, and even prosthetic devices) in the
testbed will represent a CPS personalized in the sense that the
control interface and autonomy level depend on the person’s
abilities to enable the human to independently navigate in the
home.

Within this CPS testbed, we have enabled design teams to
rapidly prototype assistive robotics technologies by following a
model-based design methodology to design, model, simulate,
and implement a unique smart sensor, actuator or controller
node to create a smart living environment. The integration of
a variety of embedded systems allows students with different
backgrounds to complete level-appropriate and focused course
projects. The smart environment is composed of proximity
sensors, pressure sensors, motion detection sensors for activity978-1-4673-7509-2/15/$31.00 2015 IEEE



monitoring, actuator modules for interacting with doors, win-
dows, lights, and electronic devices, human-interfaces as per-
sonal assistants, and cameras for safety (fall-detection). Thus,
design teams can define and validate subsystem requirements
within this heterogeneous human-in-the-loop cyber-physical
system.

The CPS testbed consists of a room with approximately
400 sq. ft. of space. Inside, a variety of commercially available
products form the core of the CPS. Communications capabil-
ities are provided by the combination of Ubiquiti Networks
products: a UniFi AP-AC, Edge Router, and ToughSwitch.
The 3x3 MIMO access point accommodates 450 Mbps at 2.4
Ghz and 1300 Mbps at 5.8 Ghz. The access point, router, and
switch provide flexibility to implement VLANs, QoS, multiple
SSIDs, custom routing and triggering providing scalability as
more devices enter the CPS.

In terms of embedded devices, the CPS includes a Ubiquiti
mPort to which a mFi-DS door sensor, mFi-MSC motion sen-
sor, and mFi-THS temperature are connected. This provides the
system with information about when and how long doors have
been open, if there is any motion in the room, and what the
ambient temperature is. In addition, three streaming IP cameras
are placed throughout the room to accommodate any computer
vision approaches to detecting, tracking, or assisting people in
the CPS. In addition, a series of six Bluetooth low energy
Estimote beacons are dispersed throughout the environment.
These beacons are completely self-contained without any user
serviceable components. By comparing the received signal
strength (RSSI) from each beacon, a device that has Bluetooth
4.0 capabilities can localize itself to about 1-2ft accuracy in
the room. Finally, a series of Ubiquiti mPower power strips
are in the CPS, allowing remote control of electrical outlets
and data collection on electricity usage on a per port basis.

In order to aggregate the data, a server running Ubuntu
is also installed in the CPS. We treat this server essentially
as a local ”cloud”. In a real deployment to a home, the
devices would be connected to a commercially available cloud
platform, but to help with development and debugging, we
connect the devices locally in the testbed. The server runs the
Ubiquiti mFi Controller and UniFi WiFi Device Management
which interfaces and controls all the Ubiquiti devices. Finally,
we deployed a local copy of a Phant service to allow embedded
and networked devices to quickly and efficiently push/pull data
through HTTP requests.

III. ELEMENTS OF THE CPS

As part of the Fall 2014 graduate-level course on model-
based design, teams of students were tasked to create in-
dividual subsystems that would form elements of the CPS.
During the 12 week project phases, the teams conducted
brainstorming, design, implementation, and testing to develop
devices and software elements that would be beneficial to an
elderly population, enabling them to more safely live and age-
in-place. Ultimately, the success of the projects ranged from
robust implementations that could be deployed in a matter of
months to proof of concept systems that would need more
development, but nonetheless the projects demonstrated that
the CPS testbed can be used to test and develop assistive
robotic technologies in a quick and resourceful way. Next, we

describe a sampling of the projects and how they fit within the
CPS testbed.

A. Adjustable Height Cane

The team designed and developed a cane with an integrated
actuator that allows it to adjust its height dynamically as the
user moves around their environment. The purpose of the cane
is to facilitate and ease the movement of the user, especially
on stairs, landings, and when bending over to pick up objects.
A 1/3” per revolution and 30:1 gearmotor are retrofitted in a
milled slot on a regular metal can.

The actuation can be either commanded by the user, or
commanded autonomously at certain areas like the top and
bottom of stairs. When the user enters the bottom of the
staircase area, the can retracts 7” to help the user up the stairs.
When the user enters the top of the staircase, the cane extends
7” to help the user down the stairs. The retract and extend
behavior of the cane is controlled by a finite state machine
(FSM) which provides a desired length to a PID controller.
The PID controller then spins the motor the correct amount to
achieve the length.

The cane is useful not only in a stair climbing scenario, but
would also be beneficial to assist the user while rising, either
from a chair, getting out of bed, or bending over to pick up an
object. The ultimate goal of the cane would be improve ease
of use, so an untrained elderly user can understand how the
cane operates in less than 30 seconds. The cane also provides
a nice platform to integrate additional sensing such as heart
monitors, fall detection, floor anomaly detection, and obstacle
mapping within the home.

B. Pressure Sensitive Rug

The team integrated an array of force sensors on the
bottom of a small area rug that would be common to a
home environment. As an elderly person’s senses and cognitive
abilities degrade, one problem that occurs is they have a harder
time recognizing if anyone is with them in a given room.
Vision-based implementations to help track people throughout
their homes have been developed before (in addition, we
present one such project for tracking an assistive robot or
wheelchair), but privacy concerns limit their applicability in
real-world environments. Instead, a pressure sensitive rug can
easily distinguish and track people throughout rooms of a home
without the privacy concerns that cameras introduce.

To execute the pressure sensitive rug, an array of force
sensors was attached to the bottom of an existing floor rug. A
simple mass-spring-damper model was employed to model the
forces of the users foot on top of the rug. In order to eliminate
false positive detection from dropped objects, pets, etc, the
action of a user stepping on and off the rug, from heel strike
to toe off, was modeled in logic and detections that did not
fit the forces associated with a step are rejected. This type of
filtering proved very good at rejecting spurious and accidental
detection.

Given the simplicity of the system, several assumptions
were made including one person stepping on the rug at a time,
the array of sensors is across the direction of travel (the array is
parallel to a door opening for example), the person does not U-
turn on the rug, and the person does not jump but walk onto the



rug. Testing showed the system did not miss a single detection
when a user walked onto the rug from within ±45 deg of the
centerline of the rug. In addition, various objects were dropped
onto the rug to test the false positive rejection, and not a single
objects registered as a footstep.

C. Biometric Sleep Detection

One of the most significant concerns about elderly aging-
in-place and living independently is forgotten appliances that
pose a fire hazard. One of the uses for the wearable health
monitoring shirt from above is to monitor sleep. If a person’s
sleep can be reliably detected, an appliances connected to the
WiFi controlled power strips can be automatically checked and
turned off if they pose a fire risk.

By monitoring the heart rate, respiratory rate, and accel-
eration, we can accurately determine if the user is sleeping.
To eliminate false negatives (which carry a heavy cost in this
scenario), only three of the conditions, heart rate, respiration
rate, respiration rate, or accelerometer data need to be below
their thresholds to indicate the user has fallen asleep. A simple
FSM defines these thresholds and controls the power to the
appliances.

The system was tested with the shirt on a user who was
in the process of falling asleep. The sensor data was then
monitored by the FSM and within a prescribed time period
detected the sleeping state and shut off the connected devices.
Because of the relatively low thresholds for the sleep state, no
false positives were detected during the user’s daily routine.
Future versions should have adaptive thresholds that eliminate
the need to tailor them manually to each individual using the
system.

D. Intelligent Stool

Short stools are a popular furniture item in many house-
holds. Elderly individuals like to use them because they are
helpful for placing objects on top, seating, or using them as a
footrest. The stool serves as an extension that helps the elderly
by providing flexibility, comfort, and support as they need it.
A serious issue though, stools present a tripping hazard when
they are not in use. They are short, and may be more difficult
to recognize than larger furniture such as tables making them
a potential hazard.

We implemented an intelligent stool that can be summoned
or dismissed based on voice commands. When the stool is
needed, it approaches the user and provides the necessary
assistance. When the user is done using the stool, they can
command it to move away. The stool is implemented using the
commercially available TurtleBot 2 platform, which is a small
differentially driven robot approximately the size of a stool.
The robot has a preloaded map of the environment and uses
a 3D Adaptive Monte Carlo Localization (AMCL) algorithm
to localize within the map. Using the Bluetooth localization
beacons to locate the user, the robot can navigate to the user
and assist them.

E. Assistive Walker

Walkers help the elderly by providing support and a
platform to rest on when they have to stand for extended

periods of time. We implemented a system that assist the
elderly to navigate and move around the environment when
using their walkers. Most commercially available walkers are
simple aluminum frames with wheels and skids. Some have
brakes included as well, but none have any sort of built in
intelligence. We developed an assistive walker that has object
avoidance using passive control through user cues. An ring
of LED lights can help the user navigate around obstacles or
through doorways without getting their walker stuck.

The system consisted of a regular aluminum walker,
retrofitted with wheel encoders to provide odometry informa-
tion, ultrasonic sensors and LIDAR to detect obstacles in front
of the walker, and a ring of LED on the front bar to guide
the user to a given direction. In testing, the walker was able
to correctly guide a user through the center of a doorway,
preventing them from bumping the sides. While the passive
system would be useful to many individuals, and system that
also activates the brakes may be of more use to the elderly
with more severely degraded physical capabilities.

IV. CASE STUDY: FALL DETECTION WITHIN THE CPS

While the projects presented above provided a good breadth
of different applications, we implemented a more in-depth
case study of an important topic to aging-in-place: detecting
falls. Accidental falls are a major cause of both fatal and
non-fatal injuries in the elderly population with one in three
experiencing a fall each year [14]. While in many cases people
are transferred to a nursing home, this is not always an
improvement as about 20% of falls for people 65 and over
occur in nursing homes and only 5% of this population lives
in a nursing home [15]. We demonstrate that a fall-detection
robot as part of a HiLCPS within the home environment can
allow the elderly to age-in-place.

Our approach, described here, uses a RGB-D camera to
detect the presence of a person and an algorithm to detect
when the detected person falls. This solution was implemented
with the intention of being used on mobile robots; this would
allow for it’s use on a companion robot that would stay with
the person.

A. Sensing

This approach is implemented using a Xbox Kinect RGB-
D camera. While originally developed for the Xbox 360
gaming console, this sensor is cost-effective and produces a
640x480 color image and a 320x240 depth image at 30 frames
per second making it extremely useful for various robotics
applications. The combination of the camera and depth images
can then be used to detect a fall. The high framerate is
particularly important because a fall is a very dynamic event
so having a number of frames of information is important for
detecting it. The sensor also has existing drivers for retrieving
images from the device and performing person detection as
discussed in the next section.

B. Person Detection

The OpenNI NITE [16] person skeleton tracking frame-
work is used in order to detect people in the sensors view.
The implementation proved to be very robust to different
orientations and positions of people. Other detectors were



Fig. 1. OpenNI Person Detection

investigated, including the PCL ground plane people detector
[17], but proved to perform significantly worse when the
person was partially obscured or in a non-standing position.
The PCL detector also requires extraction of the ground
plane, which adds additional complexities and needs validated
for dynamic environments if mounted on a mobile robot.
OpenNI was also able to directly communicate with the Kinect
eliminating the overhead of marshaling the data into a different
format. The use of OpenNI also allows the algorithm presented
to run with a number of different sensors other than the Kinect
including the Primesense Sensor. Figure 1 shows the point
cloud generated by the Kinect and places axes at the points
identified on the body by the OpenNI skeleton tracking.

Other approaches, such as [18], involve attaching a sensor
to the person being monitored. While this removes the need
to distinguish a person from their surroundings, it reduces
reliability since they have to remember to attach the sensor
or always keep the device with them.

C. Detecting a fall

Previous work has taken similar approaches to detecting
falls using RGB-D cameras [19] [20]. The approach described
here expands on these approaches by adding additional pro-
cessing for removal of false negatives and handling of partially
obscured people.

1) Skeleton Processing: In order to detect a fall the system
looks at the motion of the upper body of the subject. The
system initially processes the information from the Kinect into
a skeleton using the OpenNI NITE framework. The skeleton
that is generated includes 3D points representing the estimated
position of the head, torso, neck, shoulders, elbows, hands,
hips, knees, and feet. While the positions of these points tend
to be accurate when the entire body is in view, if obscured,
the positions of the legs and arms default to fully extended
or match to whatever looks most like the obscured body
part. Because it can not be easily determined whether the
limbs are visible or not the information is ignored and instead
this algorithm focuses on the core body. The full skeleton
is reduced to a bounding box defined by it’s width, depth,
and height and the vertical position of the torso. These values
are then used in future steps to detect a fall. To compute the
bounding box the detected skeleton points are reduced to those
of the head, torso, neck, shoulders, and hips and the minimum
and maximum positions are computed in all three dimensions.
The width, height and depth of the box are then computed as in

Equation 1. A value representing the average vertical position
of the body is then extracted from the torso measurement.

W = |Xmax −Xmin|
D = |Ymax − Ymin|
H = |Zmax − Zmin|

(1)

2) Data Filtering: The width and height of the bounding
box are then combined into a single measurement that repre-
sents the radius of the box face parallel to the ground (WD)
using Equation 2. This eliminates the effect of the rotation of
the person relative to the camera about the axis perpendicular
to the floor.

WD =
√

W 2 +D2 (2)

The rate of change of the bounding box WD (vWD),
height (vH), as well as the absolute vertical position (vZ)
from the skeleton are then computed between the previous
and current frame. If any of the box size rate of changes are
greater than a threshold speed, Tv, then the current frame is
ignored and the velocity will be computed between the next
frame and previous frame in order to smooth any sudden jumps
in estimated position. The computed velocities are then passed
into a Savitzky Golay filter as implemented in [21]; the filter
operates over the past nine computed velocities and further
reduces the noise that exists in the skeleton point estimation.

3) Fall Detection State Machine: In order to detect a
fall the system looks for the height of the bounding box to
begin decreasing simultaneously as WD is increasing. This
would indicate that the person is getting shorter and wider,
which could mean they are falling. Additionally, the vertical
velocity of the person is checked to confirm that the person
is moving downward. This value can be used to eliminate
false positives, such as sitting down, by tuning it to be greater
than the expected maximum speed during normal motions, but
less than them falling. If all three of these conditions are
met (vH < −TvH , vWD > TvWD and vZ < −TvZ)
for a given period of length timefalling then the person
is considered to be potentially falling. The skeleton is then
monitored for inactivity (vH < TiH) for a period of time
greater than timeinactive seconds indicating that the person is
no-longer moving. The period of inactivity must occur within
another time period (timesettling) in order to give the person
time to finish falling, eliminating potential false negatives.
Once all of these conditions are true a fall has been confirmed.
This process is described in Figure 2.

D. Relevance to Robots and CPS

While the method described here was implemented with a
static sensor it could easily be added to an assistive robot, such
as PARbot [22]. By placing the sensor on a mobile platform
that can follow the user around, the user can always be in view
of the system without the need to place sensors in every room.
The robot could also reposition as the subject moves about
a room in order to ensure full coverage of a room without
the need for multiple cameras. The fall detection algorithm
is independent of motion in the plane of the floor so the
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robot is free to move around a room, as long as it is able
to keep the subject in view. Combined with the information
from the ambient intelligence in a HiLCPS home environment,
the robot can ensure the safety of the person in a wide variety
of scenarios.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The system was tested in a scenario placed in a room
roughly 15’ by 18’ with various pieces of living room furniture
(a couch, table and multiple chairs scattered around the room
in different locations). The Kinect was placed in different
locations around the room at a height of about 2.5’. This height

was chosen because it represented a minimum height for a
camera to observe a subject lying on the ground. While the
camera could be placed higher in the room, such as ∼6.5’ in
[20], it would require a taller robot and placing it at a lower
level tested the limits of what could be seen on the floor;
placing the camera higher would have allowed better visibility
of a person laying on the ground because the view of the
person would be less angled. Placing the camera lower would
have caused the view angle to decrease to the point where it
would be impossible to detect a body on the ground; however,
most of the fall testing was done onto a mattress that was a
foot tall so the falling person was only being observed from a
height 1.5’ above the surface they fell on. Also, if the sensor is
placed too low then it can be obscured by furniture in a living
space so a height must be chosen based on potential visual
obstacles.

B. Testing

The algorithm was tested with three datasets, each con-
taining a recording of actions from a different person. The
datasets consisted of people performing a number of actions
in the space described above; these included walking around,
standing still, sitting down, standing up, and falling all in a
number of different orientations. As shown in Table I once
the system is tuned the algorithm is able to perform well with
minimal false positives and only a few false negatives. The
parameters used for this test are described in Table II. In order
to prevent injury during testing all falls were done onto a
twin mattress lying on the floor. This is a potential source
of experimental bias introducing inconstancy between how a
person actually falls and the recorded falls for the datasets. In
some cases falling on the mattress would result in the subject
bouncing upwards after initially landing; while this did not
appear to affect most results, in a few cases it caused the
subjects legs to bounce up in the air. This caused the person to
have an apparent upwards velocity to the system. With these
two results ignored the algorithm performs fairly well over all
of the testing. Another potential inconsistency with use cases is
that the speed of movement may have been greater than those
who would be observed; however, this difference only makes
it more difficult for the algorithm to distinguish between a fall
and a person sitting down as the faster someone sits down the
more it looks like a fall; this means that the algorithm should be
more robust to false positives in the case of someone moving
slower.

TABLE I. DETECTION ACCURACY RESULTS

Action Detected Falls Total Accuracy
Falling 7 9 78%
Falling (no bounces) 7 7 100%
Sitting Down 0 4 100%

TABLE II. ALGORITHM PARAMETERS

Name Value
Tv 0.8 m/s
THv 0.03 m/s
TvWD 0.11 m/s
TvZ 0.65 m/s
TiH 0.45 m/s
timefalling 0.12 s
timeinactive 0.5 s
timesettling 2.0 s



VI. FUTURE WORK FOR FALL DETECTION

The system presented here has proved to be a robust way
of detecting the fall of a person. By using the rate of change of
a bounding box surrounding a subject the algorithm is able to
detect the fall of a person that is independent of movement of
the sensor along the ground. The use of a smaller bounding box
containing just the upper body also allows for better handling
of then the person is partially obscured. This makes is an
optimal option for implementation on a mobile robot system.
Two mobile robots that are currently being used to develop
assistive robotic systems for older adults are PARbot and the
commercially available Turtlebot 2. Both of these robots are
wheel-based, allowing for smooth movement along a floor and
already contain RGB-D cameras that are compatible with the
OpenNI driver used in this implementation. Additionally, both
robots are already using ROS, making it easier to integrate. The
addition of a mobile robot also allows for interaction after a
fall has been detected. The robot can reach out to the user and
determine if they are responsive and determine their current
state, such as whether they actually fell, if they are OK, or if
they need help to get up.

Further investigation of the detection of the person could
also be conducted. The system as implemented here only
supports one user; however, it could easily be extended to
support multiple users with the same algorithm as the OpenNI
skeleton tracker supports up to 15 people. Additionally, the
version of the OpenNI skeleton tracker used requires an initial
calibration of the user when the program starts. Additional
work could be put into making this a one time calibration that
could be stored or removing the need for it entirely.

VII. CONCLUSION

We have presented a HiLCPS testbed to enable the quick
development, testing, and deployment of assistive robotics
technologies in the home of elderly individuals. We built
testbed in a lab environment with initial capabilities allowing
for the testing of both individual systems and a collection
of systems built by different design teams. The CPS testbed
consists of equipment enabling the individual systems to
communicate and exchange information, a powerful server
to emulate the computational power available in commercial
cloud solutions, and a selection of sensors and controls over the
ambient intelligence integrated within the CPS environment.

We presented eight different projects built by different
design teams meant to integrate in the CPS environment to
help the elderly live independent lives and age in place.
Projects included a cane that can adjust height to help the user,
pressure sensitive rug to detect people entering/exiting rooms,
a wearable health monitor to detect emergency situations, a
sleep detection algorithm to shut off unused appliance that are
a fire risk, an intelligent stool to minimize the risk of tripping,
an assistive walker to help the user navigate the environment, a
vision-based localization device for generic mobile platforms,
and finally a system to provide wardrobe suggestions based on
the weather. Finally, we provided an in depth case study of the
potential use of a mobile robot within the CPS to detect and
respond in case an elderly person falls at home.
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