
Realization of Vision-Based Navigation and Object
Recognition Algorithms for the Sample Return Challenge

Velin Dimitrov, Mitchell Wills, and Taşkın Padır
Robotics Engineering

Worcester Polytechnic Institute
100 Institute Road, AK123

Worcester, MA 01609
{vdimitrov, mwills, tpadir}@wpi.edu

Abstract— We present the improvements to AERO, the Au-
tonomous Exploration Rover, developed for the 2014 NASA
Sample Return Robot competition with the intent of enabling
more robust and reliable autonomous operation for sample
return rovers. The competition requires the robot to navigate
a large outdoor area, find and collect various geologic samples,
and return to the starting platform all autonomously and utiliz-
ing only space compatible technologies. We highlight improve-
ments made in the implementation and deployment of the vision,
navigation, and planning systems. We describe the process of
modifying the software to be closer aligned with ROS standard
practices, resulting in more predictable and stable operation.
We conclude by providing a roadmap for the integration of
multiple heterogeneous systems in a shared control framework
to enable efficient exploration of large unknown environments.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 AERO . 2
3 VISION SYSTEM . 2
4 NAVIGATION AND PLANNING . 3
5 FUTURE WORK . 6
6 CONCLUSION . 7

ACKNOWLEDGMENTS . 7
REFERENCES . 7
BIOGRAPHY . 8

1. INTRODUCTION
Many scenarios in robotic planetary exploration require in-
teraction of multiple agents, both human and robotic, but
such interaction is impeded by significant time-delays and
bandwidth restrictions of the communication channels. Our
research focuses on the intersection between autonomous
and teleoperated systems, and more specifically on how
autonomous behaviors in a system can be combined with
user input to enable shared control modalities previously not
possible. Prior robotic missions to the Moon and Mars have
followed mostly teleoperated mission scenarios, consisting
mainly of highly scripted and preplanned task sets uploaded
for semiautonomous execution. As humankind’s exploration
capabilities on the Moon and Mars continue to improve
[1], and as missions evolve to include multiple robotic plat-
forms (including rovers, micro-rovers, hoppers, and orbiters)
with varying complexity and resources, a paradigm shift in
mission design approach is required to rely more on the
autonomy of these systems. While this has proven to be an
effective approach especially for minimizing mission risks, it

978-1-4799-5380-6/15/$31.00 c©2015 IEEE.

poses significant challenges when scaled to multiple systems.
In order to effectively implement shared control operation
though, more robust and reliable autonomous behaviors are
needed. In addition, these behaviors must be validated in
a variety of different environments so their actions are well
understood.

Figure 1. AERO during field testing in a gravel mining pit.

In this paper we present our work towards more robust and
reliable autonomous operation for sample return rovers, with
the intent to intelligently integrate the human operator input
and intent in future iterations. The work was guided by the
2014 NASA Sample Return Robot (SRR) Centennial Chal-
lenge, and focused on the integration of vision-based navi-
gation and object recognition algorithms for the previously
developed Autonomous Exploration Rover (AERO), shown
in Figure 1. The presented work builds on experiences from
developing the rover for the 2013 SRR Challenge [2], and
previous work with the Oryx 2.0 rover [3–5]. New training
procedures for the cascaded classifiers used previously in [2]
led to significantly improved detection and tracking perfor-
mance. In addition, modifications were made to the previous
software architecture to speed-up detection and therefore en-
able detection in situations where the rover is moving. A GPU
based implementation was also developed with significant
improvements in detection rates in specific situations. AERO
also saw improvements in navigation performance, with a

1

completely redesigned navigation architecture based on the
best practices suggested in the new Robot Operating System
(ROS) control framework.2 A new high level state machine
significantly improved in handling conditions that previously
caused navigation faults, and tighter integration between
the subsystems in the navigation architecture led to better
accuracy. A new method to integrate global information for
virtual reality tags was developed and led to improvements
in docking back at the starting location. We discuss all of
these improvements in detail, and provide insight into our
experiences with the algorithms and how they need to be
further modified and improved.

Our long-term goal is to leverage these improvements in
autonomous operations to design, develop, and validate a
human-in-the-loop control framework for enabling operators
to control multiple semi-autonomous rovers to complete co-
operative manipulation tasks. Control inputs to the sys-
tem from operators will be limited to high-level, abstract
commands, and the framework is expected to autonomously
handle the coordination between the robotic systems to com-
ply with the intent of the operator commands. Cooperative
manipulation will likely be required to explore areas where
the abilities of one rover system are insufficient, because
the terrain is too rough, steep, or loose, and specifically
when a sample cache may need to be handed off between
two systems. These actions will be safer with less risk to
mission success and the health of the individual systems with
improvements in the autonomous behaviors and actions of the
system as a whole.

This paper is organized as follows: Section 2 introduces the
AERO platform, Section 3 describes the improvements made
to the vision system for sample detection and navigation, Sec-
tion 4 describes the new navigation and planning framework,
and Section 5 outlines the roadmap for future work.

2. AERO
The Sample Return Robot Challenge is an annual NASA
Centennial Challenge hosted by Worcester Polytechnic In-
stitute for the first time in June 2012. The premise of the
competition is to encourage teams composed of engineers,
students, and tinkerers to build fully-autonomous robots that
can navigate a large outdoor area, find and collect various
geologic samples, and return them to the starting pad within
the time limit [6]. The caveat is that only space-compatible
technologies are allowed, meaning that global positioning
systems, sonar, compasses, magnetometers, and similar tech-
nologies are not allowed. These limitation create significant
challenges to accurate localization and navigation, requiring
solutions similar to what many military systems use in GPS-
denied or GPS-corrupted areas. Samples for collection are
split into three categories, easy, intermediate, and difficult,
based on how much information and detail is provided on
each sample apriori. For example, the easiest samples are
fully described, and the difficult ones are just noted to be
metallic objects of interest that visually do not appear to
belong in the environment. For level one only a single easy
sample is on the field, but for level two a combination of many
easy, intermediate, and difficult samples are on the field.

AERO, the Autonomous Exploration Rover, is a research
platform designed originally for the 2013 NASA Sample
Return Robot Centennial Challenge. Shown in Figure 1, the

2http://wiki.ros.org/ros control

rover is comprised of a differential-drive four-wheeled mobil-
ity platform and 6-degree of freedom (DOF) manipulator with
a fixed suspension. AERO has a footprint of about 99cm by
67cm with a mast height of just under 1.5m and weighs about
80kg. AERO is instrumented with four Allied Vision Manta
G-095C cameras in a two stereo pair configuration, a KVH
1750 fiber optic gyroscope based inertial measurement unit
(IMU), a 50m SICK LMS151 LIDAR, and wheel encoders.
The robot uses the ROS framework to maintain a flexible and
modular software architecture. 3 The ROS architecture en-
courages re-use of code and modules reducing development
time significantly.

Fusing a combination of data from the LIDAR, IMU, and
wheel encoders, AERO localizes and navigates in the search
area without the aid of GPS or compasses. The lower stereo
pair has a shorter base-length designed to help the robot see
nearby obstacles potentially missed by the LIDAR and to
categorize any samples immediately in front of the robot. The
information provided by the stereo cameras helps the rover
localize samples with sub-centimeter accuracy with respect
to the base, used to move the arm to manipulate and store
the sample. A second, longer-base length stereo pair is
used to identify potential areas of interest to explore. Many
samples can be flagged, but not necessarily categorized, up to
distances of 20m using the top stereo pair. Once closer, the
rover can use its lower stereo pair as described above. Finally,
the top stereo pair can locate the home beacon, a box covered
in AprilTags [7], at ranges in excess of 50m helping guide the
robot back to the starting platform at the end of the search
period.

3. VISION SYSTEM
To detect the samples, classify them, and retrieve using
the vision system, we implement the standard Haar cascade
classifiers from the OpenCV libraries within the ROS system.
Once an object is detected, its 3D location information is
extracted from the disparity maps generated by the stereo
cameras. The details of the detection algorithms is not ex-
plained, because the approach has not significantly changed
from the 2013 competition. Improvements in the structure
and ROS implementation of the detection algorithms were
made, but the core approach is the same as in [2, 4].

Significant improvements though were made in detection
performance, by generating a better training data set, and
iterative adjustment of the training parameters exposed by
the OpenCV Haar cascade training utility. In order to train
the classifier, training images of each sample need to be
provided to classifier training utility. In the previous year, we
utilized images of the sample with cloth-lined, lit table-top
stages, and random noise backgrounds, resulting in detection
performance that was usable but limited in cases of mixed-
shade or unexpected orientations of the sample object. We
determined that the practice of taking a few sample images
and generating thousands of synthetic images using distor-
tions may be sufficient in many cases, but does not provide
the necessary robustness in the variable conditions expected
during the competition.

We therefore changed the approach to utilize over 3000 hand-
cropped images for the precache hook objects in various
conditions to generate a very diverse and wide-ranging data
set. A small utility that varies the exposure was used during
the collection of the data sets to simulate varying lighting

3http://www.ros.org

2

Figure 2. A sample subset of the training images used for the
precached hook sample of the NASA Sample Return Robot
Competition. Over 3000 such images were used to generate
the classifier for the hook.

conditions. In addition, data sets from various locations were
included with various leaves, sticks, and natural debris in
the negative sample set to help eliminate false positives from
debris in the field. Training on the data-set with over 3000
positive images and 9000 negatives would take on the order
of 2-3 days on a modern Core i7 computer. By running mul-
tiple simultaneous instances of the single-threaded training
program, we could quickly generate multiple classifiers with
different training parameters, leading us to a set of parameters
for the training that yielded very good classification, even in
darkly shaded areas, areas with leaves and sticks, and mixed
shade.

In addition to using the CPU based Haar cascade classifier
provided by OpenCV, the GPU based classifier, trained on
using the same data-set, was also tested. When running on the
NVIDIA Tesla K20 GPGPU inside AERO the classifier ran 7
times faster while utilizing only 20% of the GPU’s capacity
and with minimal CPU usage.4 Although the GPU classifier
significantly outperforms the CPU classifier, the number of
detections were significantly fewer than the CPU. Using the
CPU based classifier introduced additional delay before the
results were reported; however, in practice the delay was not
a limiting factor for the speed that the robot could operate
at. The effects of the delay that may have caused error in the
detected position of the sample while the robot was moving
were mitigated by ensuring that the robot had reached a full
stop before attempting to accurately detect the position of a
sample.

A feature we implemented on AERO, but did not end up
using during competition because we only tested it in specific
cases, was visual odometry through the ROS implementation
of libviso2 [8]. Despite not using it during competition,
the algorithm does work well and provides another source
of information that can be provided to the Kalman filter

4https://github.com/RIVeR-Lab/aero srr 14/blob/hydro-
devel/vision/src/cascade classifier.cpp

Figure 3. Four screen shots from the ROS visualization
tool, rviz, showing the visual odometry package tracking the
motion of the robot. The robot drives forward first, takes a
slight right, and then a slight left. The red line traces out the
path the visual odometry package calculated for the robot.
The visual odometry was tested and proved useful in certain
cases, but ultimately not used during competition.

resulting in a more accurate estimate of the pose of the robot
throughout its operation. The algorithm works by tracking
how objects within the frame of the stereo cameras move, and
then correlates that motion to the motion of the stereo vision
system. Since the camera sensors are over a megapixel each,
the processing rate of the visual odometry is slow compared
to the dynamics of the system. To overcome this issue, we
tweaked several parameters of the default implementation
to reduce the number of regions the algorithm is searching,
tailor them to be more sensitive in the yaw of the platform
by making the regions tall and skinny across the camera
frame, reduce the number of points matched in each region,
and decimating the input images to a quarter of the source
resolution. These modification did not significantly affect
the accuracy of the algorithm, but raised the frame rate
of the processed pose estimates to about 12-15 frames per
second. These simplification proved sufficient to provide
usable visual odometry data from the stereo cameras.

4. NAVIGATION AND PLANNING
The implementation of the planning architecture for the
robot is done by creating multiple levels of planners that
ranges from controlling individual components of the robot
to planning the high level tasks throughout the entire run.
The planning process is divided into separate systems in
order to make each system both easy to understand and to
modify. The levels communicate by passing desired actions
to a lower level controller that will execute the action and then
communicate back the result (success or failure). This allows
the higher level controller to try again or attempt to find a
different way of completing the task. Figure 4 shows the
organization of the different planning systems and the tasks
they perform.

3

Figure 4. An overview of the organization of the planners
on the robot and their tasks.

At the highest level there is a single finite state machine that
represents the current high level task that the robot is trying to
accomplish, such as driving off the platform, picking up the
sample and driving toward the platform. Each of the states
represents a different requested action that is dispatched to a
lower level planner to execute. This high level view of the
robot’s current state allows for easy debugging and reuse of
similar actions.

While a finite state machine manages the high level operation
of the robot, lower level planners manage individual com-
ponents of the robot. Separate planners run for the arm and
drive controllers that allow the high level planner to command
actions such as move the arm end effector to a pose or drive
the base to a location. The drive system has two levels of
planning, a higher level planner that generates waypoints that
the robot will use to get to a final goal and a lower level drive
planner that generates a velocity for the robot to get to each
waypoint.

Local Drive Planner

A local drive planner is implemented using the ROS base
local planner5, which implements the Dynamic Window Ap-
proach for collision avoidance as described in [9]. This
approach works by sampling the robot’s control space and
then projecting the result of those control inputs into the
future. The resultant trajectories are then scored based on
a number of factors including obstacle proximity and goal
proximity, ignoring trajectories that would cause the robot to
collide. The best control input is then chosen based on score
and then executed. This process is executed continuously
until the robot reaches the desired waypoint generated by the
global planner. If none of the trajectories are valid, because
the robot got too close to an object for example, the local
planner supports a number of recovery behaviors including
backing away from an obstacle in front of it.

As the local planner’s goal is in close proximity to the robot
(within 10 meters), the planner only operates on a small
costmap that is generated as a subset for each new laser scan.
As it does not operate on a global costmap that is generated
from multiple laser scans, the planner is not affected by
potential incorrect localization that causes errors in the global
costmap, which could lead to the robot crashing into an
obstacle. Additionally because it only has to search paths

5http://wiki.ros.org/base local planner

inside of this region, requiring much less computation than
planning an entire route through the environment. This allows
the planner to run at 20 Hz allowing the robot to react quickly
to changes; while the environment of the competition is static,
at times the robots 2D perception of the world through the
laser scanner could change quickly. For example, as the robot
approaches a hill it slowly inclines upward (if the hill is not
too steep) causing it to see the hill further out as it moves
upward. If the robot did not replan quickly enough it would
see the hill as a wall and try to drive around it.

Global Drive Planner

In order to plan a path to locations that are not near by to
the robot, a global drive planner is used to generate local
waypoints to the goal that would be sent to the local planner
as a goal. The ROS navfn package6 global planner implemen-
tation is used; it implements a global planner that computes
a plan from a start position to end position using Dijkstra’s
algorithm. Because this algorithm has to plan over the entire
known environment it can not run nearly as frequently as the
local planner. Instead the planner only runs when it receives
a new goal or when the local drive planner is unable to find a
path to the next waypoint in the current plan. When it runs,
a new plan will be generated from the current position to the
current goal. When it is detected that the robot has reached
(or is very near) the most recent waypoint, a new waypoint
will be sent to the local planner.

Arm Planners

Although our arm controller does support planning a path to
a desired end effector pose in Cartesian space, it does not
support specifying an approach vector or easily avoiding the
robot itself. Instead of using a full motion planner to plan the
desired trajectory, a number of finite state machines are used
to implement planners to execute actions such as picking up
a sample or stowing the arm using the controller’s built in
planning. They are each represented as sequence of positions
either in Cartesian space or state space of the arm that the
arm would move to. This gives well defied trajectories for the
different actions that the arm needs to perform. When picking
up a sample, the location of the sample is known to be in a
small bounded area on the ground in front of the robot. This
allows the intermediate poses that the arm takes to remain the
same except for the poses where the fingers initially grasp the
sample.

High Level Planner

The high level planner guides the robot through the operation
of the competition. For level one of the competition, it can
be divided into three sections: navigating to the approximate
location of the sample, finding and collecting the sample, and
returning to the start. These are implemented in a single finite
state machine shown in Figure 5 and described below.

Navigating to the Sample—After the robot finishes booting,
it begins executing the state machine. The first thing that is
done is to wait for the hardware to finish initializing. This
involves waiting for all of the drivers and software to start up
and the IMU to finish calibrating. The arm is then placed in
the stowed position so that is does not obscure the cameras.
Once this is complete the robot prepares to leave the platform
by software shuttering the laser scanner so that it does not
place obstacles on the local or global costmap. This is done in
a number of places throughout the state machine in situations
that are known to be safe, but in some cases can lead to the

6http://wiki.ros.org/navfn

4

Figure 5. The finite state machine used to complete level one that represents the current high level task that the robot is trying
to accomplish, such as driving off the platform, picking up the sample and driving toward the platform. Each of the states
represents a different requested action that is dispatched to a lower level planner to execute. Recovery behaviors for each action
are also specified so that the robot can perform a recovery behavior that makes sense in the current context.

laser scanner indicating that there is an obstacle in front of
the robot when there is not. In this case the laser scanner
is shuttered because when the robot leaves the platform it
tilts down so that the laser scanner sees the ground. Since
it is known that there are no obstacles directly in front of the
platform, the laser data can be safely ignored as the robot
drives off. The robot then drives straight off the platform
by driving a specified distance away from the start and then
unshutters the laser.

After successfully leaving the platform the robot then begins
to navigate towards the known approximate location of the
sample. As the level one sample was known to be behind the
platform a path was chosen that would ensure that the robot
traveled around the platform. To accomplish this the robot
first drives to a position off to the side of the platform and
then drives toward the approximate location of the sample.

Sample Location and Collection— Once the robot reaches
the edge of the zone that the sample can be found in, it
begins searching for the sample. It starts by driving to the
center of the approximate location. If it sees the sample
while it is driving it will stop and attempt to pick it up.
Otherwise when it reaches the center it will begin a spiral
search pattern centered there with each rotation separated by
a meter ensuring that the entire area is thoroughly searched.
If at any point during the spiral the sample is detected, then
the robot will attempt to pick it up.

When the robot sees the sample, it immediately stops and
waits two seconds so that it comes to a complete stop and any
vibrations dampen. After this, the robot attempts to detect the
sample again. This is done so that an accurate 3D position can
be estimated for the sample using the disparity image from
the stereo camera pair. Once the position is estimated, the
robot then chooses what to do based on how far away the
sample is. Because the position estimation is less accurate at
farther distances, the robot does not immediately try to drive
up to the sample and pick it up based on one detection, but
instead slowly moves closer to it using multiple detections.
If the robot is far away from the sample then it will drive
to a position near the sample (about 1 meter away), detects
the sample again, and repeats. If the robot is already at that
distance then it drives up to the pickup position (so the sample
is 10-20 cm away), detects the sample and repeats. If the
robot is then detected to be in the pickup position then the
arm is commanded to pick up the sample. If at any point in
the process the sample is no longer detected the robot would
abort trying to pick up the sample and restart the spiral search
pattern.

After the robot attempts to pick up the sample, the robot
would try to detect the sample again in order to ensure that
it was actually picked up. If the sample was not detected
then the robot would assume that it successfully picked up the
sample and return to the starting platform. If the sample was
detected again then the sample was not successfully picked

5

up and another pickup would be attempted by repeating the
detection, drive and pickup process. If the arm is interrupted
or never completes the pickup trajectory after a timeout, such
as if it ran into something or could not plan to a given
configuration, then the robot will abort the pickup and stow
the arm. After stowing the arm the robot will then drive
backward a meter and attempt to pick up the sample again. By
doing this the robot is able to reposition in order to potentially
improve the position for the pickup.

After the sample is detected the laser scanner is shuttered for
the entire process of navigating to the sample and picking it
up. This is done so that the sample is not accidentally detected
by the laser scanner and interpreted to be an obstacle making
it impossible to drive to it. This is also known to be safe
because the samples are known to not be located near any
kind of obstacle. Once the sample pickup is completed or
abandoned the laser scanner is unshuttered so that the robot
does not run into anything as it continues driving.

Returning to the Start Platform—After the robot successfully
picks up the sample it begins to return to the starting platform.
To do this the robot drives towards the starting platform while
searching for the fiducial markers that were placed on the
platform. If the robot does not see the fiducials it begins a
spiral search pattern until it sees them. Once the platform
is identified the robot drives to a position in front of the
platform. The laser scanner is shuttered again so that it does
not accidentally see the platform as an obstacle and then
drives onto the platform and stops, completing the challenge.

In order to accurately detect the location of the home platform
the AprilTags [7] fiducial system was used because they allow
for the calculation of the relative position of the camera to
the tag in addition to providing a collection of many unique
tags that can be used. A simple C++ library7 is available that
allows for efficient extraction of the tag positions from an
image. Many of these tags were placed in various orientations
on the starting platform such that at least one could be seen
from any angle as shown in Figure 6. Because the position of
each tag was well know relative to the platform the position
of the platform could easily be computed. Each detection of
the beacon was then used as an input to a Kalman filter that
would estimate the position of the platform. This estimated
position was used as a reference frame when generating goals
for the robot to drive to when returning to the platform.

5. FUTURE WORK
Future work will focus on integrating the autonomous be-
haviors and modes developed on AERO for the SRR com-
petition with other work on teleoperated modes with Oryx
2.0 into a shared control multi-robot system for efficiently
exploring unknown terrain. It is not reasonable to assume
that autonomous modes of operation would be used exten-
sively in a space environment soon because of the risk they
entail, but on the other hand teleoperation and carefully
choreographed scripting of robot behaviors will not scale well
to multirobot systems. The human-in-the-loop cyber physical
system (HiLCPS) modeling framework developed in [10] can
help verify and validate the shared control system. We have
reproduced the diagram in Figure 7.

The structure of the architecture is split into quadrants related
to where (cyber and physical) each component resides and

7http://people.csail.mit.edu/kaess/apriltags/

Figure 6. The beacon covered with AprilTags that was
placed on the starting platform.

who (human and robot) contributes the information in each
component. The components in the cyber realm operate in
an abstract area that could be in the internet (on a cloud
platform for example), could be on the robot, or could be
distributed across several different areas. The cyber realm
is not characterized by physical location but the availability
of significant computation power and bandwidth within the
realm, where heavy computing and intelligence can be easily
implemented. The components in the physical realm are
associated with the tangible objects of the system such as
the on-board computing of the systems and interfaces the
operators utilize.

A second categorization splits the architecture between com-
ponents that directly utilize mostly human-centric informa-
tion or robot-centric information. The components base their
outputs on the information that is available, so this is a natural
dichotomy based on how the control within the system is split
between the autonomous agents and the human-driven ones.
The human robot interface provides an abstraction for the
information transfer between the two realms encompassing
information generated by the operators and also automatic
contextual information from the other elements. It is separate,
but includes information from the operator interface. In
reality, these boundaries are fuzzy and not clear-cut defined
in a real system, but such a categorization helps with the
comprehension of information sources and flow within the
system.

Concepts such as trust between agents in the system, the per-
formance of the system, the control effort required within the
system, and efficiency of control need to be easily quantified
and described within the architecture. In addition to these
interface-level metrics (metrics between subsystems within
the HiLCPS), metrics internal to the subsystems should be
available to encourage system-level optimization and model-
based control of these HiLCPS. Complex intricacies in the
systems can then be easily evident as opposed to being buried
in the details and coupling of the individual subsystems.

The work on the vision system in Section 3 presented in this
paper is relevant to the perception engine, where all the rele-
vant sensor data is aggregated from the different platforms. It
is the first place that has access to data from multiple sources,
so sensor fusion algorithms to confirm localization of robots,
samples of interest, or landmarks can be implemented. In

6

Figure 7. The shared control architecture consisting of the knowledge base, action engine, achievable action gate, perception
engine, low-level robot control, human robot interface, context engine, cloud engine, and operator interface. The architecture
is split in both cyber and physical domains, and also human and robot domains depending on where elements are located and
who contributes information to each element.

addition, the work on the navigation and planning system in
Section 4 is relevant to the action engine, achievable action
gate, and low-level robot control. We are also working on
integrating the different shared control modalities described
in [11]. The more robust autonomy that can be pushed
off to the individual robots, results in less operator load
and commands that can be at higher more abstract levels.
The shared control framework will inevitably change and
be modified as we continue to work towards an integrated
exploration system across multiple platforms.

Efforts to combine observations from multiple systems are
already providing unprecedented results, especially with the
collaboration between ground based rovers, the Mars Recon-
naissance Orbiter (MRO), and the human operators of each
system. For example, work in [12] demonstrates collabora-
tion between orbital maps and rovers for effective long range
localization. As these collaborations begin to include more
systems, the infrastructure of the shared control framework
can provide a guide to enable structured development of
collaborations between multiple robots.

6. CONCLUSION
We have presented our work on AERO for the 2014 NASA
SRR competition with the intent of enabling more robust
and reliable autonomous operation for sample return rovers.
Future work will focus on taking the improvements in auton-
omy to the platform and applying them to a shared control

system of multiple platforms for more efficient exploration of
unknown environments. We highlighted improvements made
in the training procedures for the object classifiers, leading
to much better classification performance, in addition to the
addition of new features such as visual odometry for better
navigation. Moreover, AERO competed in the competition
with a completely redesigned navigation and planning sys-
tem, closer aligned with ROS standard practices, resulting in
more predictable and stable operation. Finally, a new method
for taking into account global position information based on
virtual reality tags was presented.

ACKNOWLEDGMENTS
The authors would like to thank AGCO, KVH, Clearpath
Robotics, Harmonic Drive, NVIDIA, Dragon Innovation,
Gigavac, and Advanced Circuit sponsored the development of
AERO. In addition, the authors want to thank Bond Construc-
tion for allowing the testing of rovers in their rock quarry.
Finally, the authors would like to acknowledge the Robotics
Engineering Program at Worcester Polytechnic Institute and
the team that built AERO.

REFERENCES
[1] J. P. Grotzinger, J. Crisp, A. R. Vasavada, R. C. An-

derson, C. J. Baker, R. Barry, D. F. Blake, P. Conrad,
K. S. Edgett, B. Ferdowski et al., “Mars science labora-

7

tory mission and science investigation,” Space science
reviews, vol. 170, no. 1-4, pp. 5–56, 2012.

[2] V. Dimitrov, M. DeDonato, A. Panzica, S. Zutshi,
M. Wills, and T. Padir, “Hierarchical navigation archi-
tecture and robotic arm controller for a sample return
rover,” Systems, Man, and Cybernetics (SMC), 2013
IEEE International Conference on, 2013.

[3] T. Carlone, J. Anderson, J. Amato, V. Dimitrov, and
T. Padir, “Kinematic control of planetary exploration
rover over rough terrain,” Systems, Man, and Cyber-
netics (SMC), 2013 IEEE International Conference on,
2013.

[4] V. Dimitrov and T. Padir, “A comparative study of tele-
operated and autonomous task completion for sample
return rover missions,” in Aerospace Conference, 2014
IEEE, March 2014, pp. 1–6.

[5] J. Amato, J. Anderson, T. Carlone, M. Fagan,
K. Stafford, and P. T., “Design and experimental vali-
dation of a mobile robot platform for analog planetary
exploration,” Proc. IECON 2012: 38th Annual Conf. of
the IEEE Industrial Electronics Society, Montreal, CA,
Oct. 25-28, 2012.

[6] Sample return robot challenge. Worcester Polytechnic
Institute. [Online]. Available: http://challenge.wpi.edu

[7] E. Olson, “AprilTag: A robust and flexible visual
fiducial system,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
IEEE, May 2011, pp. 3400–3407.

[8] A. Howard, “Real-time stereo visual odometry for au-
tonomous ground vehicles,” in Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, Sept 2008, pp. 3946–3952.

[9] D. Fox, W. Burgard, and S. Thrun, “The dynamic
window approach to collision avoidance,” Robotics Au-
tomation Magazine, IEEE, vol. 4, no. 1, pp. 23–33, Mar
1997.

[10] V. Dimitrov and T. Padir, “A shared control architecture
for human-in-the-loop robotics applications,” in RO-
MAN, 2014 IEEE, Aug 2014.

[11] A. Enes and W. Book, “Blended shared control of
zermelo’s navigation problem,” in American Control
Conference (ACC), 2010, 2010, pp. 4307–4312.

[12] P. Carle and T. Barfoot, “Global rover localization by
matching lidar and orbital 3d maps,” in Robotics and
Automation (ICRA), 2010 IEEE International Confer-
ence on, 2010, pp. 881–886.

BIOGRAPHY[

Velin Dimitrov is a Ph.D. Candi-
date in the Robotics Engineering pro-
gram at Worcester Polytechnic Institute
(WPI) since the fall of 2011. Velin re-
ceived his Bachelors of Science in Elec-
trical and Computer Engineering from
Franklin W. Olin College of Engineering
in Needham, MA. As part of his work
in the Robotics and Intelligent Vehicle
Research Laboratory, Velin has been in-

volved in NSF sponsored research on developing a semiau-
tonomous wheelchair, DARPA funded research working with
the ATLAS robot for the DARPA Robotics Challenge, and

participated in two NASA RASC-AL Robo-Ops competitions
and two NASA Sample Return Robot Centennial Challenges.
He has completed internships at both Milara in Medway,
MA, and Teledyne Benthos in North Falmouth, MA. Velins
areas of interest include human-in-the-loop shared control
of robots for of space exploration, disaster response, and
assistive applications.

Mitchell Wills is an undergraduate
student at Worcester Polytechnic Insti-
tute (WPI) pursuing a degree in Com-
puter Science and Robotics Engineering.
Mitchell is interested in software engi-
neering for robotics applications, robot
controls, and embedded systems devel-
opment. Along with working on nu-
merous robots for classes, Mitchell has
participated in the NASA Sample Return

Robot Centennial Challenge in 2013 and 2014, and assisted
a team competing in the RASC-AL Robo-Ops Competition.
He also works as a teaching assistant for WPI’s robotics
navigation and mapping course and has real world software
experience from internships at companies including MITRE,
Microsoft, and Google.

Taşkın Padır is an Assistant Professor
of Robotics Engineering and Electrical
and Computer Engineering at Worcester
Polytechnic Institute. He received his
Ph.D and M.S. degrees in electrical and
computer engineering from Purdue Uni-
versity. He holds a B.S in electrical and
electronics engineering from the Middle
East Technical University in Turkey. PI
Padir has significant experience with the

design, development and control of robotic systems and
intelligent vehicles. He is the director of the Robotics
and Intelligent Vehicles Research Laboratory (RIVeR Lab)
at WPI. His research interests include human-in-the-loop
robotic systems, design of robot control interfaces, cooper-
ating robots, control of redundant robot systems, control of
ground vehicles, navigation, path planning, and mapping for
autonomous robots. His projects have been sponsored by
NSF, DARPA, NASA, AFRL, Draper Laboratory and many
industry partners including AgCo, The MathWorks, Solid-
works, and National Instruments. Moreover, he is the 2013
Joseph S. Satin Distinguished Fellow in WPI’s Electrical
Engineering, and he received the Inaugural Rho Beta Epsilon
Award for Excellence in Robotics Education in 2010 and
2011 Romeo L. Moruzzi Young Faculty Award for Innovation
in Undergraduate Education for his contributions to WPI’s
unique undergraduate program in robotics engineering. He
is currently the PI of two NSF sponsored grants on the design
and control of assistive robotics systems and a co-PI on WPI’s
DARPA Robotics Challenge Track C Team which took the 2nd
place in the Virtual Robotics Challenge in June 2013, 7th
place in the DRC Trials, and advanced to DRC Finals to be
held in June 2015.

8

