Hierarchical Navigation Architecture and Robotic
Arm Controller for a Sample Return Rover

Velin Dimitrov, Mathew DeDonato, Adam Panzica, Samir Zutshi,
Mitchell Wills, and Taskin Padir, Member, IEEE
Robotics Engineering Program, Worcester Polytechnic Institute
rover@wpi.edu

Abstract—This work presents a hierarchical navigation archi-
tecture and cascade classifier for sample search and identification
on a space exploration rover. A three tier navigation architecture
and inverse Jacobian based robot arm controller are presented.
The algorithms are implemented on AERO, the Autonomous
Exploration Rover, participating in the NASA Sample Return
Robot Centennial Challenge in 2013 and initial results are
demonstrated.

Index Terms—sample return rover, driving with tentacles,
histogram of gradients, inverse jacobian

I. INTRODUCTION

The insatiable human curiosity and desire to explore proved
Earth is neither the sole planet in the solar system nor the
center of the universe. Technologies developed over the last
40 years have significantly enhanced humanity’s ability to ex-
plore extraterrestrial bodies with teleoperated robots returning
stunning images and scientific data of distant planets. In this
work we present AERO, the Autonomous Exploration Rover,
to advance the next evolution in space exploration. The next
generation of exploration robots need to go where teleoperated
robots cannot bring us.

AERO, shown in Figure 1, is comprised of a differential-
drive four-wheeled mobility platform and 6-DOF manipulator
designed to participate in the NASA Sample Return Robot
Centennial Challenge. The task is to navigate a large outdoor
area, find and locate various samples, and return them to
the starting platform. Samples are defined in three broad
categories: easy, medium, and hard. The easy samples are
fully defined in terms of physical characteristics, the medium
samples are defined in broad terms about general size, color,
or texture, and the hard samples are vaguely defined, engraved
with a small unique marking.

Fusing a combination of data from a fixed, forward-facing
stereo vision system, LIDAR, and IMU, AERO implements
a simultaneous localization and mapping (SLAM) algorithm
to mark what areas are searched and return to the starting
platform at the end of the competition. A second panning
stereo vision system on a mast is used to locate and identify
samples using object classifier and texture-based algorithms.

This work presents a navigation system and vision system
that allow the rover to avoid obstacles, navigate towards the
samples, recognize the samples, and retrieve them. At a con-
ceptual level, the system is designed with hierarchical control

978-1-4799-0652-9/13/$31.00 ©2013 IEEE

layers. The supervisor, global planner, and local planner layers
handle the state of the robot, current path to the target, and
avoiding obstacles respectively.

Fig. 1. AERO along with its VR tag homing beacon.

In order to locate and identify samples, AERO utilizes
stereo vision object recognition, localization, and grasping
algorithms to control the manipulator and retrieve the samples.
Our algorithm first extracts the location information of the
object of interest using disparity maps for location in 3D
space. An object recognition algorithm determines the type
of object and its orientation to plan a proper approach vector
and grasping strategy.

AERO’s misson can be split into three main subtasks:
navigating and localizing within the large outdoor area, iden-
tifying and classifying samples, and retrieving the samples
with a manipulator. The paper is organized in the following
manner: Section II introduces the platform design of AERO,
Section III outlines the previous work relevant to the navigation
and vision algorithms, Section IV explains the architecture of
the navigation system, Section V describes the local planner,

Section VI explains the global planner, Section VII outlines
the process for detecting and retrieving samples, Section VIII
describes the controller for the manipulator, Section IX shows
the preliminary results of our implementation, and Section X
summarizes our work.

II. PLATFORM DESIGN

The system architecture is designed with the main sub tasks
in mind. For example, AERO leaves the maximal amount of
space on top of the robot for sample storage. The sensors are
selected to comply with the competition rules, but also provide
useful data to complete every subtask. A 6-DOF manipulator
was selected to provide the most flexibility in sample handing,
especially with the hard, undefined samples.

Inside AERO, a Roboteq MDC2250 dual output 60A motor
controller implements closed loop velocity control on the
primary drive motors. The control loop is closed using standard
quadrature output optical encoders. The primary battery pack
is also inside the robot towards the front consisting of sixteen
40Ah CALB LiFePO4 cells in an 8s2p configuration to provide
25.6V, 80Ah nominally. LiFePO4 cells were selected because
of their good compromise between energy density, safety,
and charge cycles. Two Manzanita Micro MK3x8 battery
management systems ensure the safety of the lithium battery
pack. Towards the front on a server motherboard, dual 8-core
Intel Xeon processors provide the main computing hardware
complemented by a NVIDIA Tesla K20 GPGPU co-processor.
The Tesla GPGPU excels at image processing because of its
highly parallel nature and significantly increases the vision
processing capabilities of AERO.

A. Navigation Sensors

The main sensors AERO uses to navigate are the LIDAR,
IMU, mast-mounted stereo vision system, and wheel encoders.
GPS and other satellite based navigation aids are not used
because they are not compatible with challenge rules. We
selected a LMS151 LIDAR from SICK because of its 50
meter maximum range and excellent outdoor performance. The
LIDAR directly feeds the SLAM algorithm by very accurately
providing ranging data to trees and man-made features in the
environment. A KVH 1750 fiber optic ring gyro IMU provides
accelerations and angular velocities to enable AERO to dead-
reckon when no good LIDAR features are available. A fiber
optic ring gyro was selected because of its excellent stability
and very low drift rates, providing accurate dead-reckoning for
extended times without absolute positioning information from
the LIDAR. The mast-mounted cameras periodically pan and
extract trees from the scene to help localize the robot as well.
Finally, wheel odometry from the motor encoders is fused with
all the available data in an extended Kalman Filter (EKF) to
localize the robot beter than any one sensor can by itself.

B. Sample Detection and Classification

Sample detection and classification is entirely implemented
by the computer vision system. The top mast cameras identify
anomalies in the grass that could potentially be samples and

mark them on a probabilistic map on the robot. The robot
inspects each potential sample from a close distance using
the fixed, front-mounted stereo vision system. The easy and
medium samples are identified and classified using a Linear
Binary Pattern (LBP) classifier. Because the features of the
easy and medium samples are known ahead of time, the robot
is preloaded with a training set of data helping it identify these
samples. The hard samples are identified by their generally
different appearance in the environment. The metallic hard
samples are extracted from the grass background using simple
normalized RGB color filtering. In addition, the fixed forward
facing vision system extracts the location, major axis, and
bounding box of each samples in order to assist in planning a
suitable approach vector for the manipulator.

C. Manipulation

A Kinova Jaco 6-DOF manipulator was selected to collect
samples. It is a commercially available system that provides
AERO with the needed flexibility to pick up samples of
different sizes and place them on different locations on its
top plate. The manipulator has a three-finger underactuated
and compliant gripper with individual control over all fingers.
The manipulator utilizes brushless DC motors with Harmonic
drives resulting in low power consumption while still providing
up to lkg payload.

III. PREVIOUS WORK

Our navigation algorithms are all based on the principle of
driving with tentacles. Dillmann et. al. [1] present a method
for extending the driving with tentacles algorithm [2]. They
propose a system that allows for the control of an autonomous
off-road vehicle that is more robust than the original work
due to its ability to incorporate additional sensor data into
the selection process. However, the algorithm only adds the
ability to add additional obstacles and in a generally binary
representation of existing. It did not adapt the underlying
principle, and thus does not use the additional information to
its fullest extent.

Quinlan et. al. [3] present a the concept of a real-time
deformable global path in their work. They present a system
where an initial global path is calculated, and as new sensor
data is incorporated into the model the path is deformed
locally to remain collision free. However, the computations are
relatively expensive locally. In addition, the global path is never
re-planned. If new sensor data has produced the possibility of
a new global path that is more optimal, but beyond the reach of
a local deformation, it will not be explored. Finally, collisions
are only taken into consideration when deforming the path.

Mataric et. al. [4] present the concept of integrating global-
tasks into behavior-based robots. In their method, a rough local
path is planned, and behaviors are biased such that the robot
will tend to follow the global path. In their work however,
the behavior set is limited to a small series of hard-coded
actions such as ’turn-left’, ’go backwards’, etc. The system
also takes up all of the computational resources on the robot,
but this work is fairly dated and may have been strongly

affected by technology limitations. Finally, there is no concept
of exploring, the focus is solely on following a collision-
free path between global points making unsuitable for space
exploration.

The Haar algorithm in [5] and histogram of gradients
(HOG) are two of algorithms already implemented in the
OpenCV library for object detection. These are well known
algorithms, and have been modified in various ways for
many tasks. For the generation of disparity maps from stereo
cameras, Doppelmann in [6] explains the important parameters
such as SAD window size and demonstrates how they should
be set. In our work, we use the standard OpenCV imple-
menations of these algorithms leveraging the performance
optimizations of OpenCV.

IV. NAVIGATION OVERVIEW

The implementation of driving with tentacles involves the
generation of a set of arcs that emanate from the front
of the robot. The navigation algorithm uses the following
terminology.

Tentacle: A circular arc in space extending outwards from the
front of the robot. Its properties are determined by the speed
of the robot and the its position in a speed set.

Speed Set: A set of tentacles that correspond to a particular
linear velocity.

Pseudo-Subsumption: A heuristic method to implement sub-
sumption levels of in a behavior-based system, making them
soft constraints instead of hard constraints.

Object of Interest (Ool): Objects on the field being explored
which have been identified as samples.

A. Hierarchical Control

The AERO navigation system at its core uses the concept
of hierarchical control which can be divided into three levels
(Fig.2).

Supervisor (High Level Tasks)

Search

Global Planner

Fast +
Local Planner
Collect
e m
Accurate

Home

Nav to Obj

Fig. 2. The three levels of the hierarchical control. The supervisor coordinates
the mission-level tasks. The global planner plans beyond the sensor horizon
on the global map. The local planner plans on a local map representing a
snapshot of the current environment around the robot.

The supervisor is the top layer of control implemented by
a finite state machine and is responsible for mission level task
planning and coordinating robot state. Examples of mission-
level tasks include searching the field for objects of interest,
navigating to a specific Ool, and collecting an Ool once it
has been identified as a sample. It manages feedback from
the Ool classification, sample collector control, as well as the
navigation system. For the purposes of this work, we are only
concerned with current mission task output of the supervisor.

TABLE I
NAVIGATION SYSTEM FAILURE MODES
Effect Down Chain

Failure Effect Up Chain

Supervisor NA Global planner receives
no new mission-tasks
Robot does not complete ~ Local planner receives
mission-task no new goal points

Robot stops moving NA

Global Planner

Local Planner

The global planner is the layer of control below the su-
pervisor (Section VI). It is responsible for planning in the
global scale and implementing the mission-task specified by
the supervisor. The lowest layer of control is the local planner
(Section V) which uses pseudo-subsumption. It is responsible
for sending velocity commands to motor controllers and for
dynamic obstacle avoidance.

B. Fault Tolerance

The hierarchical control allows the navigation system to
have a high degree of fault tolerance. Systems further down in
the chain can operate independently of systems higher up the
chain. For example, if the supervisor fails, the global planner
will simply continue attempting to complete its last mission-
task. If the global planner fails, the local planner will attempt to
reach the last goal it received following its standard behaviors,
and then stop. Likewise, failures at the lower levels of the
control hierarchy always leave the robot in a controlled, defined
state. The failure modes are summarized in Table 1.

V. LOCAL PLANNER

The local planner implements the low level platform drive
control and dynamic obstacle avoidance. As an input, it re-
ceives a goal in the global frame which it transforms into the
local frame, and the current sensor data. It produces as its
output the set of control velocities, [v a)].

A. Driving with Tentacles

Driving with tentacles is an efficient path-planning method
[2] which utilizes a set of arcs (tentacles) as potential paths
to follow for the robot. Each tentacle is defined by its radius
and is grouped into speed sets. The tentacles in faster speed
sets are grouped more closely together with smaller radii but a
longer arc-length, and those in slower speed sets further apart
with larger radii but smaller arc-length (Fig. 3). In [2], tentacle
selection is performed by determining which tentacle is the
longest before running into an obstacle given a radius of safety
for the robot.

B. Extended Driving with Tentacles Algorithm

In order to improve the algorithm in [2], AERO implements
a modified version which takes into consideration a number
of behaviors suitable for a robot performing a search-and-
return mission. The behavior-based extension of the algorithm
is inspired by [7]. The modification combines the advantages
of the tentacles algorithm, computational speed and simplicity
and easy deterministic mapping to control outputs, with added

Fig. 3. A visualization of the tentacles in a speed set. As the robot’s velocity
increases, the tentacles shift closer to the center line and become longer.

behaviors aligned with the rover’s mission. The behaviors
include:

e Move towards some predetermined goal destination

o Move towards unexplored terrain

o Move away from previously explored terrain

o Move away from ‘difficult’ terrain

The desired end behavior will select the longest tentacle
which moves the robot closest to the goal (if any) while
weighing the passing through the least amount of previously
explored terrain, the least amount of difficult terrain, and
exploring the most new area. To accomplish this, the local
planner is provided an occupancy grid generated by the global
planner. For each new occupancy grid, the local planner iterates
across each point on each tentacle in a speed set and examines
the corresponding point in the occupancy grid’s point trait.
There are two values that are updated at each point pj, on
tentacle k based on the point trait in the occupancy grid:
The distance along the tentacle that has been traversed as in
equation 2, and the length modifier given by equation 3. In
addition, if the goal point or an obstacle is intersected, the
iteration across that tentacle is halted.

Al[n] = |[p[n],p[n —1]|]2 (1)
l[n] = Al[n] + lU[n —1])

DW if FREE_HIGH_COST

™ if TRAVERSED

—UW if UNKOWN

0 if FREE_LOW_COST
3)

where DW,TW,and UW are weighting parameters for biasing

the behavior by their respective point trait.

Im[n] =Im[n—1]—Al[n] -

. 0 If no goal
lg = —GoalWeight - 4
& & { [Ppn,,g) Pgoatllz If goal @)
lf [nend] = ll[nend] + lm[nend] + lg[nend] 4)

Equation 5 presents that the final effective length of the
tentacle is the summation of its actual length before reaching
any obstacles (if any) and modifiers based on the desired
behaviors. Therefore the longest, and thus "best’ tentacle will

naturally become the one which best satisfies the behavioral
criteria. The priority of the behaviors can be adjusted by
modifying the DiffWeight, TravWeight, UnknWeight, and Goal-
Weight parameters.

It is important to note that the local planner does not
actually attempt to drive the entire length of the selected
tentacle. It produces a single set of control inputs to the
platform. With frequent updates and properly tuned weighting
parameters, the robot is able to follow a path towards the goal
while avoiding obstacles. No guarantees at all are made on the
optimality of this path, or that it will not become stuck in local
minima. When used in tandem with a global planner, however,
the majority of these pitfalls can be avoided.

In addition, as this is mainly a heuristic approach, instability
can result when two tentacles on opposite sides of the robot’s
center line have similar fitness values that swap back and forth
rapidly. The resulting effect on the robot will be oscillations
or jitter. To help damp these oscillations, a tunable rate-change
damping coefficient or low pass filter is applied on the resulting
tentacle selection. For example, if the previously selected
tentacle was at index 30 and the next tentacle is selected to
be at index 70 (the equivalent tentacle on the opposite side of
the centerline), with the rate limit is set to 5, the damper will
instead select tentacle 35. If tentacle 70 is selected again, it
will select 40, and so on.

VI. GLOBAL PLANNER

The global planner is responsible for planning in the global
world frame and completing the mission-level task specified
by the supervisor. It takes as its input the current mission-
task, and a locally centered global map generated by other
means such as a SLAM implementation which is outside the
scope of this paper. It produces as its output a series of way-
points in the global frame that it can provide to the local
planner. Due to the fact that global planner is not responsible
for actually generating control inputs to the platform and
that the local planner can improve the paths created due to
imperfect data, the global planner can run at a low update
frequency, on the order of once every 30 seconds. This saves
computational resources on the robot needed for mapping and
vision algorithms.

A. Carrot Path

Due to the behavioral properties of the local planner, the
global planner can leverage its way-point connecting abili-
ties to both save computation resources and compensate for
imperfect data on the global map. Instead of attempting to
produce a continuous path, the global planner instead produces
a series of loosely-connected way-points called a carrot path.
The carrot path strategy allows the global planner to relax
many constraints on the path planner algorithm it uses. Even if
it produces paths that are invalid because they cross an obstacle
boundary, the local planner will compensate. If the point turns
out to be unreachable due to imperfect data when the path
was created, it will be corrected at the next re-planning phase.
This would be undesirable in a robot operating in an enclosed

environment with very good mapping data, but is actually
beneficial in an exploring robot in poorly mapped spaces as
it will generally cause it to explore more of the map. It also
again saves computational resources as the planning doesn’t
have to happen on a very fine search space.

B. Task-based Planning Strategies

The global planner also varies its strategies based on the
current mission-task provided by the supervisor. Currently,
there are two planning strategies that it uses: AStarCarrot,
which is a simple modification of the A* algorithm to make
it to produce carrot paths, and RRTCarrot, which is a simi-
larly simple extension of the Bi-Directional Rapidly-exploring
Random Tree Connect algorithm described in [8] to produce
carrot paths and allow it to gracefully time-out with a partial
path. Both planners operate in a purely 2D space. Orientation
is ignored due to the fact that the only use-case that orientation
matters, collecting an Ool, is handled by a control system that
supersedes the navigation system entirely.

AStarCarrot is used when the robot is attempting to navigate
to a specific point, such as an Ool. Its path-costs are based
on the same weighting values as the local planner, and its
heuristic is the Euclidean distance to the goal point. Its search-
space is discretized to approximately lioth the distance between
points in the Carrot Path, to ensure that the output is at least
reasonably sure to be reachable. The final path is then culled
to only contain points spaced for the carrot path.

RRTCarrot is used when exploring the global map for Ool’s.
Normally RRT algorithms are avoided in 2D space because
they produce very sub-optimal and guaranteed inconsistent
between planning runs paths. However, when searching for
Ool’s this random behaviour is desirable because it encourages
a higher rate of exploration. To enforce at least some level of
consistency and reduce the likelihood of the planner sending
the robot to one end of the field in one plan and then the other
end on the next plan due to random chance, a rough ‘search
pattern’ of very distantly spaced way-points are connected in
series using the RRTCarrot planner. Similarly to AStarCarrot,
the ‘step-size’ when connecting nodes in the RRTCarrot is set
to be approximately %th the distance between points in the
carrot path, and the final output is culled.

VII. SAMPLE DETECTION AND RETRIEVAL

To detect the samples and classify them, we implement the
standard OpenCV version of HOG algorithm. Fig. 4 details
the flow of information in the vision system, and how the
sample location is passed to the manipulator controllers. Once
an object is detected, its 3D location information is extracted
from the disparity maps generated by the stereo cameras.
The manipulator controller then moves the arm to the desired
position using a inverse Jacobian velocity controller that takes
the current arm position and desired position as inputs.

In order to train the HOG, training images of each sample
need to be provided to train the classifier. Initially, a cloth-lined
and lit table-top stage was used to generate the images. This
allowed the background to be easily removed from the image,

Jaco Arm

Jaco API

Right
Camera

Image Image

Joint Velocities

Object

Detection/Recognition Velocity Controller

i
i

. Image
sample i Desired Arm

Position

Position & Orientation
Calculator

Arm Controller

Sample Arm

sample Position Position

Position

Forward Kinematics
Solver

Fig. 4. A flow diagram showing the components of the vision system for
detecting samples. The raw image streams are inputs, and after the samples is
identified in the frame, it is passed to the stages of the manipulator controller
to be picked up.

and leave just the sample in the image. After extensive testing
and training sessions though, this method did not provide good
detection rates.

In order to test the effect of the background on the training
images, a new set of images was generated with a white noise
background behind the sample. The detection rate using this
set of images increased significantly. We presume the detection
rate increases because the white noise background averages out
and the classifier ignores it, unlike a plain background.

VIII. ARM CONTROLLER

The arm controller node determines the type of grip to
use based off of the object classification, and its orientation.
The arm controller calculates a rough path and approaches the
object based on the best gripping strategy for the particular
object. The velocity controller node receives a desired point
from the arm controller, and converts it into a set of joint
velocities required to get to the point. The first part of this
node is the position control. When the desired position of the
arm is received, the node first calculates the current position
of the arm by feeding the joint angles, through the forward
kinematics. Based off of the two points the linear and rotational
errors are calculated. These errors are then each fed through
separate PD controllers. The output of the controllers are
then fed through a gain in order to convert the output into
cartesian velocity. The second part of this controller uses the
arm Jacobian calculated using the arm kinematics.

IX. RESULTS

The navigation and vision algorithms described above
were implemented with Robot Operating System (ROS) and
OpenCV in Ubuntu Linux 12.04 on AERO. The software sys-
tem was designed with flexibility and ease of implementation
in mind. ROS provides a set of libraries and development tools
on top of Linux tailored to robotics development that make it
easy to develop software in multiple language across multiple
systems. The ROS architecture involves creating a number
of nodes that communicate using an inter-process message

passing system. In addition, there are a large collection of
software tools and libraries that implement a number of
algorithms and common tasks in robotics. Data collection for
testing and visualization of data was made especially easy with
these tools.

The test environment consisted of a series of impassible
static obstacles, and one randomly moving dynamic obstacle
near the center of the path from the start to the goal position.
An example of the path taken by the robot can be seen in Fig.
5. It demonstrates the robot successfully dodging the dynamic
obstacle while still moving towards the goal. A snapshot
visualization of the data of this event can be seen in Fig. 6.

N T T T

: : —#— Goal Path
o : Actual Path
95k e P O

heters

Fig. 5. A plot of the position of the robot in the global frame which includes
a dynamic obstacle (a person moving in front of the robot) at location x ~
0.0,y ~ 8.75. The blue line is the path the robot took. The green dashed line
is the carrot path. And the purple stars are points where the carrot path was
re-planned

Fig. 6. Visualization of the robot dodging an obstacle.

Fig. 7 shows the output of the vision processing algorithms.
The samples are detected, and their positions with respect to
the arm are calculated. The arm controller then moves the ma-
nipulator into position to retrieve the samples. During benchtop
testing, the sample was successfully retrieved multiple times.

X. CONCLUSION

This work presents the navigation and vision system ar-
chitecture for a sample search and return planetary rover.

Fig. 7. Benchtop test showing the disparity map generated by the stereo
cameras, and the two samples detected by the classifier. The sample positions
are passed to the arm controller which moves the manipulator to retrieve the
samples.

We implement a modified driving with tentacles algorithm
with three hierarchical navigation layers. The layered approach
provides advantages in its implementation including increased
reliability over a single layer approach and control of its
behavior using the proposed weighting scheme. The vision
system leverages existing implementations of algorithms for
object detection with training images, providing the positions
of the samples in the work space. The arm controller uses that
information to retrieve the samples.

Further testing over the next year will be conducted in
varied outdoor environments, including in locations with rough
terrain similar to extraterrestrial environments.

ACKNOWLEDGMENT

The authors would like to thank those who supported this
work including AGCO, KVH, Clearpath Robotics, Harmonic
Drive LLC, NVIDIA, Dragon Innovation, Gigavac, EKWB,
Lincoln Tool, and Advanced Circuits.

REFERENCES

[1] M. Manz, M. Himmelsbach, T. Luettel, and H.-J. Wuensche, “Fusing
lidar and vision for autonomous dirt road following,” in Autonome Mobile
Systeme 2009, ser. Informatik aktuell, R. Dillmann, J. Beyerer, C. Stiller,
J. Zllner, and T. Gindele, Eds. Springer Berlin Heidelberg, 2009, pp.
17-24.

[2] F. von Hundelshausen, M. Himmelsbach, F. Hecker, A. Mueller, and
H.-J. Wuensche, “Driving with tentacles: Integral structures for sensing
and motion,” Journal of Field Robotics, vol. 25, no. 9, pp. 640-673,
2008. [Online]. Available: http://dx.doi.org/10.1002/rob.20256

[3] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and
control,” in Robotics and Automation, 1993. Proceedings., 1993 IEEE
International Conference on, may 1993, pp. 802 —807 vol.2.

[4] M. Mataric, “Integration of representation into goal-driven behavior-based
robots,” Robotics and Automation, IEEE Transactions on, vol. 8, no. 3,
pp. 304 =312, jun 1992.

[S] R. Lienhart and J. Maydt, “An extended set of haar-like features for
rapid object detection,” in Image Processing. 2002. Proceedings. 2002
International Conference on, vol. 1, 2002, pp. [-900-1-903 vol.1.

[6] S. Droppelmann, “Stereo vision using the opencv library,” June 2010.

[7]1 R. Brooks, “A robust layered control system for a mobile robot,” Robotics
and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14 — 23, mar 1986.

[8] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Robotics and Automation, 2000. Proceedings.
ICRA ’00. IEEE International Conference on, vol. 2, 2000, pp. 995-1001
vol.2.

